Loss of Myoferlin Redirects Breast Cancer Cell Motility towards Collective Migration
نویسندگان
چکیده
Cell migration plays a central role in the invasion and metastasis of tumors. As cells leave the primary tumor, they undergo an epithelial to mesenchymal transition (EMT) and migrate as single cells. Epithelial tumor cells may also migrate in a highly directional manner as a collective group in some settings. We previously discovered that myoferlin (MYOF) is overexpressed in breast cancer cells and depletion of MYOF results in a mesenchymal to epithelial transition (MET) and reduced invasion through extracellular matrix (ECM). However, the biomechanical mechanisms governing cell motility during MYOF depletion are poorly understood. We first demonstrated that lentivirus-driven shRNA-induced MYOF loss in MDA-MB-231 breast cancer cells (MDA-231(MYOF-KD)) leads to an epithelial morphology compared to the mesenchymal morphology observed in control (MDA-231(LTVC)) and wild-type cells. Knockdown of MYOF led to significant reductions in cell migration velocity and MDA-231(MYOF-KD) cells migrated directionally and collectively, while MDA-231(LTVC) cells exhibited single cell migration. Decreased migration velocity and collective migration were accompanied by significant changes in cell mechanics. MDA-231(MYOF-KD) cells exhibited a 2-fold decrease in cell stiffness, a 2-fold increase in cell-substrate adhesion and a 1.5-fold decrease in traction force generation. In vivo studies demonstrated that when immunocompromised mice were implanted with MDA-231(MYOF-KD) cells, tumors were smaller and demonstrated lower tumor burden. Moreover, MDA-231(MYOF-KD) tumors were highly circularized and did not invade locally into the adventia in contrast to MDA-231(LTVC)-injected animals. Thus MYOF loss is associated with a change in tumor formation in xenografts and leads to smaller, less invasive tumors. These data indicate that MYOF, a previously unrecognized protein in cancer, is involved in MDA-MB-231 cell migration and contributes to biomechanical alterations. Our results indicate that changes in biomechanical properties following loss of this protein may be an effective way to alter the invasive capacity of cancer cells.
منابع مشابه
Myoferlin Depletion in Breast Cancer Cells Promotes Mesenchymal to Epithelial Shape Change and Stalls Invasion
Myoferlin (MYOF) is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In t...
متن کاملMyoferlin is a key regulator of EGFR activity in breast cancer.
Myoferlin is a member of the ferlin family of proteins that participate in plasma membrane fusion, repair, and endocytosis. While some reports have implicated myoferlin in cancer, the extent of its expression in and contributions to cancer are not well established. In this study, we show that myoferlin is overexpressed in human breast cancers and that it has a critical role in controlling degra...
متن کاملMyoferlin is a novel exosomal protein and functional regulator of cancer-derived exosomes
Exosomes are communication mediators participating in the intercellular exchange of proteins, metabolites and nucleic acids. Recent studies have demonstrated that exosomes are characterized by a unique proteomic composition that is distinct from the cellular one. The mechanisms responsible for determining the proteome content of the exosomes remain however obscure. In the current study we emplo...
متن کاملTropomyosin isoform Tpm2.1 regulates collective and amoeboid cell migration and cell aggregation in breast epithelial cells
Metastasis dissemination is the result of various processes including cell migration and cell aggregation. These processes involve alterations in the expression and organization of cytoskeletal and adhesion proteins in tumor cells. Alterations in actin filaments and their binding partners are known to be key players in metastasis. Downregulation of specific tropomyosin (Tpm) isoforms is a commo...
متن کاملThe cytotoxic effect of memantine and its effect on cytoskeletal proteins expression in metastatic breast cancer cell line
Objective(s):Breast cancer is an important leading cause of death from cancer. Stathmin and tau proteins are regulators of cell motility, and their overexpression is associated with the progression and bad prognosis of breast cancer. Memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, is the potential inhibitor of tau protein in neurons. This study determines the effect of memantine ...
متن کامل